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Chapter 1

Introduction

A network is robust if it is resilient to fauilures. This report presents multiple
experiments where fauilures are simulated removing nodes through different
approaches and strategies.

The goal is to test the different combinations of:

1. removal strategies,

2. chosen topologies,

In order to understand their relationship and find the most damaging combina-
tions.

1.1 Datasets

This group of datasets includes three wikipedia page-page networks based on
three different topics: chameleons, crocodiles and squirrels. Nodes represent
articles from the English Wikipedia in December 2018, edges reflect mutual
links between them.

This report aim to compare the robustness of these newtorks among them
and in respect with other synthetic graphs.

The datasets we will take into considerations are:

Regular Erdős-Rényi Chameleon Squirrel Crocodile

Nodes 2277 2277 2277 5201 11631
Edges 31878 31421 31421 198493 170918
Density 0.012 0.012 0.012 0.015 0.003

1.2 Observed Metrics

In order to measure the robustness of a network we will take into consideration
two main metrics:
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1. the size of the giant component, in terms of nodes and edges,

2. the diameter of the graph,

We will show how they change when the fraction of deleted nodes increases.
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Chapter 2

Expected Results

We expect:

1. Random Graphs, such as Regular and Erdős-Rényi synthetic ones, to
show the same level of robustness against both random and targeted at-
tacks.

2. Scale-Free Graphs (our wikipedia graphs) to be robust against random
attacks but vulnerable to target attacks.

The following analysis aims to prove these hypotesys.

2.0.1 Molloy-Reed Criterion

We expect graphs to follow theMolloy-Reed Criterion. This criterion defines
a critical threshold fc, described as:

fc = 1− 1
⟨k2⟩
⟨k⟩ − 1

If in a network, we remove a fraction of nodes greater than this breakdown
threshold fc, the giant component will break into subcomponents.

For random graphs we have that this threshold can be simplified as:

fc = 1− 1

⟨k⟩

So, we expect:

1. Random Graphs to have a finite fc.

2. Scale-Free Graphs to have a fc greater than the one of the corrispondent
random graph. This would imply enhancenced robustness of our Scale-
Free graphs against Random Attacks.
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Chapter 3

Empirical Results

Since the chosen datasets have different regimes, we expect them to act differ-
ently with respect to different attacks. So, in terms of robustness, we aim to
compare the robustness of synthetic graphs against the one of our datsets.

To analyze the changes between other parameters, we fixed:

1. The number of removal per round to 20, with an exception for the largest
graph,

2. The number of maximum round to infinite,

3. The fact that we are going always to attack the giant component, com-
puting it again at each round.

3.1 General Observations

Before comparing topologies and strategies, these are some general observations.

3.1.1 Breakdown Threshold fc

A network displays enhanced robustness if its breakdown threshold fc deviates
from the correspondent random network threshold fER

c .

Chameleon Squirrel Crocodile Directed Crocodile

fc 0.987 0.997 0.997 0.997
fER
c 0.964 0.987 0.966 0.837

All the datasets show enhanced robustness.

3.1.2 Diameter

There are many aspects to consider about the evolution of the diameter of a
network under attack:
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1. Diameter value, with respect to the time of the simulation, always goes
up before going down, due to the fact that:

(a) initially, removing nodes means removing edges and so enlarging
shortest paths,

(b) then, once nodes are very few, shortest paths becomes smaller as the
size of the graph decreases.

2. the evolution of the diameter in random or scale-free graphs:

(a) doesn’t differ significatively in response to a centrality-based attack.

(b) has a huge difference if the attack is random-based, in particular:

i. a scale-free network is more resilient against random attacks and
so its diameter stays the same until the final part of the simula-
tion.

ii. a random network responds in the same way to a random or
target attack,

Here we can observe an example of the evolution of the diameter with a
random attack (proof of i):
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On the other hand, in the plots below we can observe an example of the
change of the diameter with a target attack (degree) (proof of ii):
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3.2 Synthetic Graphs

3.2.1 Regular Graph - Regular Version of Chameleon

In this section we are using a regular graph with roughly the same number of
nodes and edges of Chameleon.

These are the results involving robustness:
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We can observe some interesting facts.
The evolution of the size of the giant component approximately follows a

straight line. Although, almost at the end, the network is so broken that doens’t
act anymore as random and so target attacks are more effective.

We can also appreciate that the chosen strategy generally doesn’t influence
the trend of the different curves. There’s an exception for the random attack
which seems slightly less effective at the end of the simulation.

3.2.2 Erdős-Rényi - Random Version of Chameleon

In this section we are using an Erdős-Rényi random graph, which again, has
roughly the same number of nodes and edges of Chameleon.

As expected, results regarding robustness are the same as the ones for the
regular graph.
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3.3 Real Graphs

3.3.1 Chameleon

Our analysis is now focused on Chameleon, our smallest graph. This should
roughly approximate a scale-free regime, albeit having a small amount of nodes.

As expected, the size of the giant component:

1. decreases linearly using a random-based attack,

2. decreases significatively using a centrality-based attack.

And the same applies for the diameter that:

1. is not really affected by random-based attack, until the very end of the
simulation

2. has a very rapid evolution with a centrality-based attack, especially betweenness-
based attacks

This is the ranking of the damage of the attacks:

Diameter Nodes Edges

Betweenness Betweenness Betweenness
Closeness Closeness Closeness
Page Rank Page Rank Degree
Degree Degree Page Rank
Random Random Random

3.3.2 Squirrel

Our analysis is now focused on Squirrel, which better approximate a scale-free
regime, having double of nodes of Chameleon.
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As expected, the size of the giant component and the diamter have an evo-
lution similar to the ones seen for Chameleon.

The ranking of the damage of the attacks changes slightly:

Diameter Nodes Edges

Betweenness Betweenness Degree
Degree Degree Page Rank
Page Rank Page Rank Betweenness
Closeness Closeness Closeness
Random Random Random

3.3.3 Crocodile

Our analysis is now focused on Crocodile, the largest of the given graph.

Plots show approximately the same trend as the one seen for chameleon and
squirrel, as the scale-free structure is the same. Although, here we can notice
that closeness attack is clearly the less effective among the target-based ones.

This is the ranking of the damage of the attacks:
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Diameter Nodes Edges

Betweenness Betweenness Degree
Page Rank Page Rank Page Rank
Degree Degree Betweenness
Closeness Closeness Closeness
Random Random Random

3.3.4 Take-Away Points

Our experimental findings provide empirical evidence that supports our hy-
pothesys

With random or regular networks like the synthetic ones we analyzed, the
size of giant component and diameter have roughly the same evolution with
every kind of attack. With scale-free networks like the wikipedia ones we ana-
lyzed, the size of giant component and the diameter are deeply affected, both
in terms of edges and nodes, by target attacks.

We can also conclude that, in the wikipedia datasets, as the number of nodes
in the datasets increases:

1. random removal strategy impact doesn’t change significatively,

2. target attacks are more effective.

This is probably because, as we observed in the first assignment, as N
increases, the network shows more clear evidences of its lack of scale.

Within the observed experiments, as expected, betweenness attack is
the most effective, while random attack is the less effective. Among the
target attacks, for our datasets, the less effective strategy seems to be closeness
removal.
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