
Tasks
Operations that you need to perform



VMs and network setup
1. Setup two VMs and attach to each of them two networks as follows

VM1
Ubuntu 22.04
Hostname: node1
IP: xxx.xxx.xxx.10
(static IP)

VM2
Ubuntu 22.04
Hostname: node2
IP: xxx.xxx.xxx.20
(static IP)

Storage network
No internet access
Non reachable by the host

External network
Internet access via NAT
Reachable by the host (it's the gateway)

IP ranges:
192.168.50.0/24 for the external net
10.255.255.0/24 for the storage net



NFS share

2. Setup on node1 an NFS share at /data, allow connections only from 
node2's storage network IP

3. Mount from node2 the NFS share so that it persists at every boot
● Make the task so that multiple nodes after node2 might mount the NFS share
4. Leverage the ansible.posix module (1.4.0) action mount

https://docs.ansible.com/ansible/latest/collections/ansible/posix/mount_module.html

Tips:
You can find a node IP in the variable ansible_default_ipv4['address'].
You can read another node IP in the variable hostvars[node_name]['ansible_default_ipv4']['address']
We did a lesson on this exact operation



Docker

5. Install Docker from their repositories
https://docs.docker.com/engine/install/ubuntu

6. Use ansible.builtin.apt, ansible.builtin.apt_repository, 
ansible.builtin.apt_key



Docker swarm

7. Initialize Docker Swarm on the first node
8. Join Docker Swarm on the other node
● Make so the task allows more than one worker node to join
9. Leverage the community.docker (version 3.2.1) action docker_swarm

https://docs.ansible.com/ansible/latest/collections/community/docker/docker_swarm_module.html

Tips:
Look at the examples of the module, and on the first node save the result with the “register” directive, 
on the other nodes access that saved result to get the token at swarm_facts['JoinTokens']['Worker']
https://stackoverflow.com/questions/41122199/ansible-how-can-i-access-a-variable-of-other-host
https://stackoverflow.com/questions/48936489/use-variable-from-another-host



Docker swarm
Do not use externally forwarded ports



Docker registry

10. Install a Docker registry via Swarm so that it's reachable by both 
nodes, saving files on the NFS share at /data/docker-registry

11. Use the Docker image distribution/distribution:2.8.1
12. Use Ansible to reconfigure the nodes to trust your registry

Tip: https://docs.docker.com/registry/insecure/
13. Setup authentication for the registry and login from the nodes

Tip: community.docker.docker_login

Tips:
Configuration is at https://github.com/distribution/distribution/blob/v2.8.1/docs/configuration.md
If you have more than one replica, you might need to set something under "http"



Docker registry cache

● In order to avoid getting ratelimited, setup a cache for Docker Hub 
(called mirror in the documentation), saving files on the NFS share 
at /data/docker-registry-cache

● Use the Docker image distribution/distribution:2.8.1
● Use Ansible to reconfigure the nodes to trust the registry and use it 

as a mirror
Tip: https://docs.docker.com/registry/insecure/

● Setup authentication for the registry and login from the nodes
Tip: community.docker.docker_login



PostgreSQL

14. Use PostgreSQL as database for the services, storing the database 
data inside of /data/postgresql

15. Use the Docker image postgres:15.1
16. Choose either one db for all or one db per service (See next slide)
● Setup a primary-secondary cluster

Tip: https://www.postgresql.org/docs/15/high-availability.html



PostgreSQL (choose one)

Each service has its own database

DB per service

One DB is shared between services.

Single shared DB

Question: Why choose one? Why chose another?



PostgreSQL

Do not configure database usernames, passwords, and tables via Ansible

Either:

● Leverage the default entrypoint to run SQL statements upon first 
startup (such as in the examples)

● Leverage the default entrypoint environment variables
(this does not support the single shared DB architecture)



SSO (Keycloak)

17. Deploy a Keycloak instance using the “quay.io/keycloak/keycloak:20.0.1” Docker image
18. Use the db from before as your backend
19. Deploy a realm called “vcc”
20. Deploy a client under the “vcc” realm called “nextcloud”
21. Deploy a sample user (ensure that you can login with that on the service)

Tip:
We accidentally left a script performing these operations automatically in 
examples/nextcloud-keycloak-integrator

We also accidentally left an example on how to provision the server in the 
Makefile inside examples/keycloak



Service (Nextcloud)

22. Deploy a Nextcloud instance using the “nextcloud:23.0-apache” Docker image
23. Persist its data on NFS in /data/nextcloud
● Deploy 2 replicas, ensuring that it works correctly

24. Install the “oidc_login” application
25. Configure Nextcloud to use Keycloak as its login source

Tip:
We accidentally left a script performing these operations automatically 
in examples/nextcloud-keycloak-integrator



External gateway (Traefik)

26. Deploy a Traefik instance using the “traefik:v2.9.6” Docker image
27. Expose Nextcloud on “cloud.localdomain”
28. Expose Keycloak on “auth.localdomain”
29. Expose Grafana (see later) on “mon.localdomain”
30. Redirect automatically from HTTP to HTTPS
31. Leverage Docker swarm label configuration discovery

Tip:
Take a look at Enrico’s lessons.
To connect to a fictitious domain, you need to modify your hosts file so 
that the IP of the VM is associated with the name.



Monitoring & Logging

32. Deploy on each node FluentBit using “cr.fluentbit.io/fluent/fluent-bit:2.0.6”
● Use it for

33. Sending Docker logs to Loki (see following)
34. Exposing metrics of the node using the “Node Exporter Metrics” plugin
35. Sending metrics to Prometheus (see following) in some way
● Getting logs/metrics from as many things as possible (e.g. systemd service logs)

Tips:
Fluent Bit example configuration for sending Docker logs
Example configuration for sending metrics to a Prometheus clone
Cloud service example configuration for logs and metrics

Node agent



Monitoring & Logging

36. Deploy “prom/prometheus:v2.40.6”
37. Persist its data in /data/prometheus
38. Set its retention period to 7 days
● Use it for

39. Receiving / Scraping the metrics from FluentBit and other components
● Monitoring containers with cadvisor

40. Ensure that metrics belonging to each node and service are present

Tips:
Prometheus guide on monitoring Docker Swarm

Metrics server



Monitoring & Logging

41. Deploy “grafana/loki:2.7.1”
42. Persist its data in /data/loki
● Use it for

43. Receiving logs from FluentBit
44. Ensure that logs belonging to each node and service are present
45. Ensure that the container names / labels are meaningful

Tips:
Fluent Bit documentation for Loki
Loki documentation for FluentBit

Log storage server



Monitoring & Logging

46. Deploy “grafana/grafana:9.3.1”
● Automatically provision

47. Loki and Prometheus as data sources
● At least two dashboards

48. One showing metrics (e.g. Node CPU, disk, RAM usage, …)
49. One showing logs (e.g. Traefik Access Log, Keycloak authentication log, …)

50. Enable authentication
● Automatically provision and use a “grafana” client in keycloak for authentication

Tips:
Grafana Docker setup guide
Automatically provisioning Grafana
Integrating Grafana with Keycloak

Dashboarding


